Zum Inhalt.

RWTH LogoInstitut für Statistik und Wirtschaftsmathematik

Publikationen

Buchkapitel (Sortieren nach: Erscheinungsdatum | Titel)
Cramer, E. & Kamps, U. (1998). Maximum likelihood estimation with different sequential k-out-of-n systems. In: W. Kahle, E. von Collani, J. Franz & U. Jensen (Hrsg.), Advances in Stochastic Models for Reliability, Quality and Safety (S.101-111). Basel: Birkhäuser.
Cramer, E. & Kamps, U. (2001). Sequential k-out-of-n systems. In: N. Balakrishnan & C.R. Rao (Hrsg.), Handbook of Statistics Vol. 20, Advances in Reliability (S.301-372). Amsterdam: Elsevier.
Cramer, E. & Kamps, U. (2005). Characterization of the exponential distribution by conditional expectations of generalized spacings. In: N. Balakrishnan, I.G. Bairamov & O.L. Gebizlioglu (Hrsg.), Advances on Models, Characterizations, and Applications (S.83-96). Boca Raton, FL: Taylor&Francis.
Burkschat, M., Cramer, E. & Kamps, U. (2006). Linear estimation of location and scale parameters based on generalized order statistics from generalized Pareto distributions. In: M. Ahsanullah & M. Raqab (Hrsg.), Recent Developments in Ordered Random Variables (S..). New York: Nova Science Publishers.
Cramer, E. & Iliopoulos, G. (2015). Adaptive progressive censoring. In: P. Choudhary, Ch. Nagaraja & H. K. T. Ng (Hrsg.), Ordered Data Analysis, Modeling and Health Research Methods — In Honor of H.N. Nagaraja’s 60th Birthday (Springer Proceedings in Mathematics & Statistics Volume 149) (S.73-86). New York: Springer.
Balakrishnan, N. & Cramer, E. (2023). Progressive Censoring Methodology. In: Hoang Pham (Hrsg.), Springer Handbook of Engineering Statistics (2nd ed.) (S.153-183). New York: Springer.
Bücher (Sortieren nach: Erscheinungsdatum | Titel)
Cramer, K., Cramer, E., Kamps, U. & Zuckschwerdt, Ch. (2004). Beschreibende Statistik - Interaktive Grafiken. Berlin: Springer.
Kamps, U., Cramer, E., Strauer, D. & Herff, W. (2005). Prüfungsvorbereitung Wirtschaftsmathematik - Analysis. München: Oldenburg.
Kamps, U., Cramer, E. & Oltmanns, H. (2009). Wirtschaftsmathematik - Einführendes Lehr- und Arbeitsbuch (3. Aufl). Oldenbourg: München.. Verfügbar unter http://www.oldenbourg-wissenschaftsverlag.de/olb/de/1.c.1694442.de
Cramer, E., Herff, W. & Kamps, U. (2010). Übungen zur Mathematik (2. Aufl.). Aachen: ISW.
Clermont, S., Cramer, E., Jochems, B. & Kamps, U. (2012). Wirtschaftsmathematik - Mathematik-Training zum Studienstart (4. Aufl.). München: Oldenburg.. Verfügbar unter http://www.oldenbourg-verlag.de/wissenschaftsverlag/wirtschaftsmathematik/9783486715064
Burkschat, M., Cramer, E. & Kamps, U. (2012). Beschreibende Statistik - Grundlegende Methoden der Datenanalyse (2.Aufl.). Berlin: Springer.. Verfügbar unter http://www.springer.com/statistics/statistical+theory+and+methods/book/978-3-642-30012-7
Balakrishnan, N. & Cramer, E. (2014). The Art of Progressive Censoring. Applications to Reliability and Quality. New York: Birkhäuser.. Verfügbar unter http://www.springer.com/birkhauser/applied+probability+and+statistics/book/978-0-8176-4806-0
Cramer, E., Kamps, U., Kateri, M. & Burkschat, M. (2015). Mathematik für Ökonomen (Kompakter Einstieg für Bachelorstudierende). Berlin: de Gruyter Oldenburg.. Verfügbar unter http://www.degruyter.com/view/product/455559?rskey=IJKTGk&result=1
Cramer, E., Kamps, U., Lehmann, J. & Walcher, S. (2017). Toolbox Mathematik für MINT-Studiengänge . Heidelberg: Springer Spektrum.
Cramer, E. & Neslehova, J. (2018). Vorkurs Mathematik - Arbeitsbuch zum Studienbeginn in Bachelor-Studiengängen (7. Aufl.). Berlin: Springer.. Verfügbar unter http://www.springer.com/de/book/9783662574935
Cramer, E. & Kamps, U. (2019). Klausurtraining Statistik (2. Aufl.). Aachen: ISW.
Cramer, E. & Kamps, U. (2020). Grundlagen der Wahrscheinlichkeitsrechnung und Statistik (Ein Skript für Studierende der Informatik, der Ingenieur- und Wirtschaftswissenschaften) [5. Aufl.]. Berlin: Springer.. Verfügbar unter http://www.springer.com/de/book/9783662605516
Cramer, E. & Kamps, U. (2023). Statistik griffbereit (Formelsammlung zur Wahrscheinlichkeitsrechnung und Statistik) [7. Aufl.]. Aachen: ISW.
Balakrishnan, N., Cramer, E. & Kundu, D. (2023). Hybrid-Censoring Know-How. Cambridge, MA: Academic Press.
Contribution in Discussion of Papers (Sortieren nach: Erscheinungsdatum | Titel)
Kamps, U. & Cramer, E. (2007). Comments on: 'Progressive censoring methodology - an appraisal'. TEST, 16, 271-275
Cramer, E. (2013). Comments on “Hybrid Censoring: Models, Inferential Results and Applications” by N. Balakrishnan and D. Kundu. Comp. Statist. Data Anal., 57, 201-205
Encyclopedia Entries (Sortieren nach: Erscheinungsdatum | Titel)
Cramer, E. (2006). Sequential Order Statistics. In: S. Kotz, N. Balakrishnan, Campbell B. Read, B. Vidakovic & N. L. Johnson (Hrsg.), Encyclopedia of Statistical Sciences (2. Aufl.) (S.Vol. 12, 7629-7634). Hoboken, NJ: Wiley.
Cramer, E. (2016). Sequential order statistics. In: N. Balakrishnan, P. Brandimarte, B. Everitt, G. Molenberghs, W. Piegorsch & F. Riggeri (Hrsg.), Wiley StatsRef: Statistics Reference Online (S.to appear). New York: Wiley.. Verfügbar unter
Cramer, E. (2016). Progressive Censoring Schemes. Wiley StatsRef - Statistics Reference Online (S.to appear). New York: Wiley.. Verfügbar unter
Neue Medien (Sortieren nach: Erscheinungsdatum | Titel)
Cramer, E., Cramer, K. & Kamps, U. (2002). e-stat: A web-based learning environment in applied statistics. In: W. Härdle & B. Rönz (Hrsg.), COMPSTAT 2002 - Proceedings in Computational Statistics (S.309-314). Heidelberg: Physica.
Cramer, E., Cramer, K. & Kamps, U. (2002). Neuen Medien für den schulischen Statistikunterricht. Stochastik in der Schule, 22, 23-30
Cramer, E., Härdle, W., Kamps, U. & Witzel, R. (2003). e-stat: views, methods, applications. Bulletin of the International Statistical Institute (Vol. LX Book 2) (S.82-85). Berlin: ISI.
Cramer, E., Cramer, K., Janzing, P. & Kamps, U. (2003). EMILeA-stat: A web-based learning environment in applied statistics with a focus on learning and teaching in secondary schools. Proceedings of the IASE Satellite Conference on Statistics Education and the Internet [CDROM] (S.-). Voorborg: ISI.
Cramer, E. & Neslehova, J. (2003). (e)learning the basics of probability. Bulletin of the International Statistical Institute (Vol. LX Book 2 (Contributed Papers)) (S.153-154). Berlin: ISI.. Verfügbar unter
Cramer, E., Cramer, K. & Kamps, U. (2004). Die elementar-modulare Struktur der Lehr- und Lernumgebung EMILeA-stat. In: U. Rinn & D.M. Meister (Hrsg.), Didaktik und Neue Medien (S.175-191). Münster: Waxmann.
Cramer, E., Cramer, K., Janzing, P., Kamps, U. & Pahl, C. (2004). EMILeA-stat: Multimediales und interaktives Statistiklernen. In: R. Biehler, J. Engel & J. Meyer (Hrsg.), Neue Medien und innermathematische Vernetzungen in der Stochastik (S.107-126). Hildesheim: Franzbecker.
Cramer, E., Cramer, K. & Kamps, U. (2004). EMILeA-stat: Statistik multimedial und interaktiv. Softwaretechnik-Trends, 24, 46-53
Cramer, E. & Walcher, S. (2010). Schulmathematik und Studierfähigkeit. Mitteilungen der DMV, 18 (2), 110-114
Au, R. & Cramer, E. (2010). (A)Symmetrie in der Stochastik: Binomialverteilung und Grenzwertsatz von de Moivre-Laplace. mathematik lehren, 161, 55-58
Cramer, E., Heitzer, J., Hürtgen, H., Polaczek, Ch. & Walcher, S. (2011). Fit fürs Studium ... – Weiterführende Argumentationsanlässe in der Oberstufe. mathematik lehren, 168, 58-61
Cramer, E., Walcher, S. & Wittich, O. (2014). Studierfähigkeit im Fach Mathematik: Anmerkungen zu einem vernachlässigten Thema (In: S. Lin-Klitzing, D. DI Fuccia, R. Stengl-Jörns: Abitur und Studierfähigkeit). Bad Heilbrunn: Julius Klinkhardt.
Cramer, E., Walcher, S. & Wittich, O. (2015). Mathematik und die INT-Fächer. In: J. Roth, Th. Bauer, H. Koch & S. Prediger (Hrsg.), Übergänge konstruktiv gestalten ‐ Ansätze für eine zielgruppenspezifische Hochschuldidaktik Mathematik (Konzepte und Studien zur Hochschuldidaktik und Lehrerbildung) (S.51-68). Berlin: Springer.
Cramer, E., Walcher, S. & Wittich, O. (2016). Mathematik(-Didaktik) für WiMINT. In: R. Dürr, K. Dürrschnabel, F. Loose & R. Wurth (Hrsg.), Mathematik zwischen Schule und Hochschule (S.99-115). Berlin: Springer.. Verfügbar unter
Tagungsbeiträge (Sortieren nach: Erscheinungsdatum | Titel)
Cramer, E., Kamps, U. & Rychlik, T. (2002). Moments of generalized order statistics. In: H. Langseth & B. Lindqvist (Hrsg.), Proceedings of the Third International Conference on Mathematical Methods in Reliability MMR2002 in Trondheim (S.165-168). Trondheim: NTNU.
Zeitschriften (Sortieren nach: Erscheinungsdatum | Titel)
Cramer, E. & Nasri-Roudsari, D. (1995). Die Siebformel von Poincaré-Sylvester und "Runs", Eine Anwendung in der Informatik. Stochastik in der Schule, 15, 13-22
Cramer, E. & Kamps, U. (1996). Sequential order statistics and k-out-of-n systems with sequentially adjusted failure rates. Ann. Inst. Statist. Math., 48, 535-549
Cramer, E. & Bock, H.-H. (1996). Continuous-time Markov chains and compound Poisson processes with circulant intensity matrices. Optimization, 37, 385-392
Cramer, E. & Kamps, U. (1997). A note on the UMVUE of Pr(X<Y) in the exponential case. Commun. Statist. Theory Methods, 26, 1051-1055
Cramer, E. & Kamps, U. (1997). The UMVUE of P(X<Y) based on Type-II censored samples from Weinman multivariate exponential distributions. Metrika, 46, 93-121
Cramer, E. (1998). Conditional iterative proportional fitting for Gaussian distributions. J. Multivariate Anal., 65, 261-276
Cramer, E. & Kamps, U. (1998). Sequential k-out-of-n systems with Weibull components. Economic Quality Control, 13, 227-239
Cramer, E. (1999). Estimation of the mean and the covariance matrix under a marginal independence assumption - an application of matrix differential calculus. Linear Algebra Appl., 288, 219-228
Cramer, E. & Nasri-Roudsari, D. (1999). On the convergence rates of extreme generalized order statistics. Extremes, 2, 421-447
Cramer, E. (2000). Asymptotic properties of estimators of the sample size in a record model. Statistical Papers, 41, 159-171
Cramer, E. (2000). Probability measures with given marginals and conditionals: I-projections and conditional iterative proportional fitting. Statist. & Decisions, 18, 311-329
Cramer, E. & Kamps, U. (2000). Relations for expectations of functions of generalized order statistics. J. Statist. Planning Inference, 89, 79-89
Cramer, E. (2001). Inference for stress-strength models based on Weinman multivariate exponential samples. Commun. Statist. Theory Methods, 30, 331-346
Cramer, E. & Kamps, U. (2001). Estimation with sequential order statistics from exponential distributions. Ann. Inst. Statist. Math., 53, 307-324
Kamps, U. & Cramer, E. (2001). On distributions of generalized order statistics. Statistics, 35, 269-280
Balakrishnan, N., Cramer, E. & Kamps, U. (2001). Bounds for means and variances of progressive type II censored order statistics. Statist. Probab. Letters, 54, 301-315
Balakrishnan, N., Cramer, E., Kamps, U. & Schenk, N. (2001). Progressive type II censored order statistics from exponential distributions. Statistics, 35, 537-556
Cramer, E. (2002). A note on moments of progressively type II censored order statistics. Commun. Statist. Theory Methods, 31, 1301-1307
Cramer, E., Kamps, U. & Schenk, N. (2002). On the joint completeness of independent statistics. Statist. Decisions, 20, 269-277
Cramer, E., Kamps, U. & Rychlik, T. (2002). On the existence of moments of generalized order statistics. Statist. Probab. Letters, 59, 397-404
Cramer, E., Kamps, U. & Rychlik, T. (2002). Evaluations of expected generalized order statistics in various scale units. Appl. Math., 29, 285-295
Burkschat, M., Cramer, E. & Kamps, U. (2003). Dual generalized order statistics. Metron, 61, 13-26
Cramer, E. & Kamps, U. (2003). Marginal distributions of sequential and generalized order statistics. Metrika, 58, 293-310
Cramer, E., Kamps, U. & Raqab, M. (2003). Characterizations of exponential distributions by spacings of generalized order statistics. Appl. Math., 30, 257-265
Cramer, E., Kamps, U. & Rychlik, T. (2004). Unimodality of uniform generalized order statistics, with applications to mean bounds. Ann. Inst. Statist. Math., 56, 183-192
Cramer, E. (2004). Logconcavity and unimodality of progressively censored order statistics. Stat. Probab. Lett., 68, 83-90
Cramer, E., Kamps, U. & Keseling, C. (2004). Characterizations via linear regression of ordered random variables: A unifying approach. Commun. Statist.Theory Methods, 33, 2885-2911
Hofmann, G., Cramer, E., Balakrishnan, N. & Kunert, G. (2005). An asymptotic approach to progressive censoring. J. Stat. Plann. Inference, 130, 207-227
Balakrishnan, N., Cramer, E. & Kamps, U. (2005). Relation for joint densities of progressively censored order statistics. Statistics, 39, 529-536
Burkschat, M., Cramer, E. & Kamps, U. (2006). On optimal schemes in progressive censoring. Statist. Probab. Letters, 76, 1032-1036
Cramer, E. (2006). Dependence Structure of Generalized Order Statistics. Statistics, 40, 409-413
Burkschat, M., Cramer, E. & Kamps, U. (2007). Optimality criteria and optimal schemes in progressive censoring. Commun. Statist. Theory Methods, 36, 1419-1431
Balakrishnan, N. & Cramer, E. (2008). Progressive Censoring from Heterogeneous Distributions with Applications to Robustness. Ann. Inst. Statist. Math., 60, 151-171
Fischer, T., Balakrishnan, N. & Cramer, E. (2008). Mixture representation for order ptatistics from INID progressive censoring and its applications. J. Multivariate Analysis, 99, 1999-2015
Balakrishnan, N., Burkschat, M., Cramer, E. & Hofmann, G. (2008). Fisher information based progressive censoring plans. Comp. Statist. Data Analysis, 53, 366-380
Balakrishnan, N., Burkschat, M. & Cramer, E. (2008). Best linear equivariant estimation and prediction in location-scale families. Sankhya B, 70, 229-247
Cramer, E., Herle, K. & Balakrishnan, N. (2009). Permanent expansions and distributions of order statistics in the INID case. Commun. Statist. Theory Methods, 38, 2078-2088
Cramer, E. (2009). Hermite interpolation polynomials and distributions of ordered data. Statist. Methodology, 6, 337-343
Balakrishnan, N., Cramer, E. & Davies, K. (2009). Some results on order statistics generated by two simulation methods. Statist. Probab. Letters, 79, 1847-1857
Cramer, E. & Tran, T.T.H. (2009). Generalized order statistics from arbitrary distributions and the Markov chain property. J. Statist. Plann. Inference (139), 4064--4071
Balakrishnan, N., Beutner, E. & Cramer, E. (2010). Exact two-sample non-parametric confidence, prediction, and tolerance intervals based on ordinary and progressively Type-II right censored data. TEST, 19, 68-91
Cramer, E. & Iliopoulos, G. (2010). Adaptive progressive Type-II censoring. TEST, 19, 342-358
Cramer, E. & Lenz, U. (2010). Association of progressively Type-II censored order statistics. J. Statist. Plann. Inference, 140, 576-583
Beutner, E. & Cramer, E. (2010). Nonparametric meta-analysis for minimal repair systems. Aust. N. Z. J. Statist., 52, 383-401
Balakrishnan, N., Cramer, E. & Dembinska, A. (2011). Characterizations of geometric distribution through progressively Type-II right censored order statistics. Statistics, 59, 559-573
Cramer, E. & Bagh, C. (2011). Minimum and maximum information censoring plans in progressive censoring. Commun. Statist. Theory Methods, 40, 2511-2527
Cramer, E. & Schmiedt, A. B. (2011). Progressively Type-II censored competing risks data from Lomax distributions. Comp. Statist. Data Anal., 55, 1285-1303
Beutner, E. & Cramer, E. (2011). Confidence intervals for quantiles in a minimal repair set-up [Special Issue on Statistical Methods in Biostatistics and Reliability]. Int. J. Appl. Math. Statist., 24, 86-97
Schenk, N., Burkschat, M., Cramer, E. & Kamps, U. (2011). Bayesian estimation and prediction with multiply Type-II censored samples of sequential order statistics from one- and two-parameter exponential distributions. J. Statist. Plann. Inference , 141, 1575-1587
Cramer, E. & Ensenbach, M. (2011). Asymptotically optimal progressive censoring plans based on Fisher information. J. Statist. Plann. Inference, 141, 1968-1980
Kennes, L., Cramer, E., Hilgers, R.-D. & Heussen, N. (2011). The impact of selection bias on test decisions in randomized clinical trials. Statistics in Medicine, 30, 2573–2581
Burkschat, M. & Cramer, E. (2012). Fisher information in generalized order statistics. Statistics (46), 719-743
Burkschat, M., Cramer, E. & Dahmen, K. (2012). A- and D-optimal progressive Type-II censoring designs based on Fisher information. J. Statist. Comput. Simul., 82, 879-905
Tamm, M., Cramer, E., Kennes, L.N. & Heussen, N. (2012). Influence of selection bias on the test decision: A simulation study. Methods of Information in Medicine, 51, 138-143
Volterman, W., Balakrishnan, N. & Cramer, E. (2012). Exact nonparametric meta-analysis for multiple Independent doubly Type-II censored samples. Comput. Statist. Data Anal., 56, 1243-1255
Cramer, E. & Naehrig, G. (2012). Laplace record data. J. Statist. Plann. Inference, 142, 2179-2189
Balakrishnan, N., Beutner, E. & Cramer, E. (2013). Computational aspects of statistical intervals based on two Type-II censored samples. Comp. Statist., 28 (3), 893-917
Rezapoor, M., Alamatsaz, M.H., Balakrishnan, N. & Cramer, E. (2013). On properties of progressively Type-II censored order statistics arising from dependent and non-identical random variables. Statist. Methodology, 10, 58-71
Cramer, E. & Balakrishnan, N. (2013). On some exact distributional results based on Type-I progressively hybrid censored data from exponential distributions. Statist. Methodology, 10, 128-150
Cramer, E. & Tamm, M. (2014). On a correction of the scale MLE for a two-parameter exponential distribution under progressive Type-I censoring. Commun. Statist. Theory Methods, 43, 4401-4414
Volterman, W., Cramer, E., Davies, K. & Balakrishnan, N. (2014). Further results on order statistics generated by two simulation methods. Commun. Statist. Simul. Comput., 43, 2732-2743
Cramer, E. (2014). Extreme value analysis for progressively Type-II censored order statistics. Commun. Statist. Theory Methods, 43, 2135-2155
Volterman, W., Balakrishnan, N. & Cramer, E. (2014). Exact meta-analysis of several independent progressively Type-II censored data. Appl. Math, Model., 38, 949–960
Alimohammadi, M., Alamatsaz, M. H. & Cramer, E. (2014). Some convexity properties of the distribution of lower k-record values with extensions. Probab. Eng. Inf. Sci., 28, 389-399
Balakrishnan, N., Cramer, E. & Iliopoulos, G. (2014). On the method of pivoting the CDF for exact confidence intervals with illustration for exponential mean under life-test with time constraints. Statist. Probab. Letters, 89, 124-130
Beutner, E. & Cramer, E. (2014). Using linear interpolation to reduce the order of the coverage error of nonparametric prediction intervals based on right-censored data. J. Multivariate Anal., 129, 95-109
Laumen, B. & Cramer, E. (2015). Likelihood inference for the lifetime performance index under progressive Type-II censoring. Econ. Quality Control, 30, 59-73
Alimohammadi, M., Alamatsaz, M. H. & Cramer, E. (2015). Discrete strong unimodality of order statistics. Statist. Probab. Letters, 103, 176-185
Cramer, E. & Navarro, J. (2015). Progressive Type-II censoring and coherent systems. Nav. Res. Logist., 62, 512-530
Cramer, E., Burkschat, M. & Gorny, J. (2016). On the exact distribution of the MLEs based on Type-II progressively hybrid censored data from exponential distributions. J. Statist. Comp. Simul., 86, 2036-2052
Gorny, J. & Cramer, E. (2016). Exact Likelihood Inference for Exponential Distributions under Generalized Progressive Hybrid Censoring Schemes . Statist. Methodology, 29, 70-94
Alimohammadi, M., Alamatsaz, M. H. & Cramer, E. (2016). Convolutions and Generalization of Logconcavity: Implications and Applications. Nav. Res. Logistics, 63, 109–123
Burkschat, M., Cramer, E. & Gorny, J. (2016). Type-I censored sequential k-out-of-n systems. Appl. Math. Model., 40, 8156–8174
Abbasi, S., Alamatsaz, H. M. & Cramer, E. (2016). Preservation properties of stochastic orderings by transformation to Harris family with different tilt parameters. Lat. Am. J. Probab. Math. Stat., 13, 465-479
Cramer, E. & Navarro, J. (2016). The progressive censoring signature of coherent systems. Appl. Stoch. Models Bus. Ind. , 32, 697–710
Hermanns, M. & Cramer, E. (2017). Likelihood inference for the component lifetime distribution based on progressively censored parallel systems data. J. Stat. Comp. Simul., 87, 607-630
Gorny, J. & Cramer, E. (2018). Modularization of hybrid censoring schemes and its application to unified progressive hybrid censoring. Metrika, 81, 173-210
Hermanns, M. & Cramer, E. (2018). Inference with progressively censored k-out-of-n system lifetime data. TEST, 27, 787-810
Cramer, E. & Davies, K. (2018). Restricted optimal progressive censoring. Comm. Stat. Sim. Comp., 47, 1216-1239
Gorny, J. & Cramer, E. (2018). Exact inference for a new flexible hybrid censoring scheme. Journal of the Indian Society for Probability and Statistics, 19, 169-199
Ottermanns, R., Cramer, E., Daniels, B., Lehmann, R. & Roß-Nickoll, M. (2018). Uncertainty in site classification and its sensitivity to sample size and indicator quality - Bayesian misclassification rate in ecological risk assessment. Ecological Indicators, 94, 348-356
Gorny, J. & Cramer, E. (2019). From B-spline representations to gamma representations in hybrid censoring. Stat. Papers, 60, 1119-1135
Gorny, J. & Cramer, E. (2019). Type-I hybrid censoring of uniformly distributed lifetimes. Commun. Statist. Theory Methods, 48, 412-433
Jablonka, A., Cramer, E. & Hermanns, M. (2019). Statistical inference for coherent systems with Weibull distributed component lifetimes under complete and incomplete information. Appl. Stoch. Models Bus. Ind., 35, 1001-1027
Laumen, B. & Cramer, E. (2019). Progressive Censoring with Fixed Censoring Times. Statistics, 53, 569-600
van Bentum, Th. & Cramer, E. (2019). Stochastic monotonicity of MLEs of the mean for exponentially distributed lifetimes under hybrid censoring. Statist. Probab. Letters , 148, 1-8
Gorny, J. & Cramer, E. (2019). A volume based approach to establish B-spline based expressions for density functions and its application to progressive hybrid censoring. J. Korean Statist. Soc., 48, 340-355
Döring, M. & Cramer, E. (2019). On the Power of Goodness-of-fit Tests for the Exponential Distribution under Progressive Type-II Censoring. J. Stat. Comp. Simul., 89, 2997-3034
Laumen, B. & Cramer, E. (2019). Stage life testing. Nav. Res. Logist. (53), 632-647
Gorny, J. & Cramer, E. (2020). On exact inferential results for a simple step-stress model under a time constraint. Sankhya B, 82, 201–239
Gorny, J. & Cramer, E. (2020). Type-I hybrid censoring of multiple samples. J. Comp. Appl. Math, 366, 112404
Hermanns, M., Cramer, E. & Ng, H. K. T. (2020). EM Algorithms for Ordered and Censored System Lifetime Data under a Proportional Hazard Rate Model. Journal of Statistical Computation and Simulation, 90, 3301-3337
Cramer, E. & Laumen, B. (2021). Stage Life Testing with Missing Stage Information – an EM- Algorithm Approach. J. Iran. Stat. Soc. (JIRSS), 20, 123-152
Cramer, E., Gorny, J. & Laumen, B. (2021). Multi-sample progressive Type-I censoring of exponentially distributed lifetimes. Commun. Statist. Theory Methods, 50, 5285-5313
Alimohammadi, M., Esna-Ashari, M. & Cramer, E. (2021). On dispersive and star orderings of random variables and order statistics. Statist. Probab. Letters, 170, 109014
Laumen, B. & Cramer, E. (2021). k-step stage life testing. Statist. Neerlandica, 75, 203-233
Jansen, M., Cramer, E. & Gorny, J. (2022). Exact likelihood inference for an exponential parameter under a multi-sample Type-II progressive hybrid censoring model. American Journal of Mathematical and Management Sciences, 41, 101-127
Laumen, B. & Cramer, E. (2022). Stage life testing with random stage changing times. Commun. Statist. Theory Methods, 51, 3934-3959
Esna-Ashari, M., Alimohammadi, M. & Cramer, E. (2022). Some New Results on Likelihood Ratio Ordering and Aging Properties of Generalized Order Statistics. Commun. Statist. Theory Methods, 51, 4667-4691
Alimohammadi, M., Balakrishnan, N. & Cramer, E. (2022). Some characterizations by conditional events of generalized order statistics. Ricerche di Matematica, to appear. Verfügbar unter http://https://doi.org/10.1007/s11587-022-00741-1
Pesch, T., Polpo, A., Cripps, E. & Cramer, E. (2023). Reliability inference with extended sequential order statistics. Applied Stochastic Models in Business and Industry, to appear. Verfügbar unter http://https://doi.org/10.1002/asmb.2764
Cramer, E. (2023). Ordered and censored lifetime data -- An illustrative review. WIREs Computational Statistics, 15 (2), e1571, 42 pages. Verfügbar unter http://https://doi.org/10.1002/wics.1571
Schmiedt, A. B. & Cramer, E. (2024). Generalized Ng-Kundu-Chan model of adaptive progressive Type-II censoring and related inference. Nav. Res. Logist., 71 (3), 389-415. Verfügbar unter http://https://onlinelibrary.wiley.com/doi/full/10.1002/nav.22152
Berzborn, M. & Cramer, E. (2024). Inference for Type-I and Type-II hybrid censored minimal repair and record data. J. Stat. Theory Practice, to appear
Pesch, T., Cramer, E., Cripps, E. & Polpo, A. (2024). Modelling failure risks in load sharing systems with heterogeneous components. IEEE Trans. Reliab., to appear
Cramer, E. (2024). Structure of hybrid censoring schemes and its implications. Metrika, to appear
Pesch, T., Cramer, E., Polpo, A. & Cripps, E. (2024). Estimation with extended sequential order statistics - a link function approach. Appl. Stoch. Models Bus. Ind., to appear
Buono, F., Cramer, E. & Navarro, J. (2024). Predicting future failures in generalized order statistics and related models. Statistics, to appear