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Abstract. When analysing time series an important issue is to decide whether the time

series is stationary or a random walk. Relaxing these notions, we consider the problem to

decide in favor of the I(0)- or I(1)-property. Fixed-sample statistical tests for that problem

are well studied in the literature. In this paper we provide first results for the problem to

monitor sequentially a time series. Our stopping times are based on a sequential version

of a kernel-weighted variance-ratio statistic. The asymptotic distributions are established

for I(1) processes, a rich class of stationary processes, possibly affected by local nonpara-

metric alternatives, and the local-to-unity model. Further, we consider the two interesting

change-point models where the time series changes its behaviour after a certain fraction

of the observations and derive the associated limiting laws. Our Monte-Carlo studies show

that the proposed detection procedures have high power when interpreted as a hypothesis

test, and that the decision can often be made very early.

Keywords: Autoregressive unit root, change-point, control chart, nonparametric smooth-

ing, sequential analysis, weighted partial sum process.
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Introduction

For many time series, in particular for economic data, the question whether the series is

stationary or becomes stationary when taking first order differences is a delicate prob-

lem. Fixed-sample tests have been extensively studied in the statistics and econometrics

literature and this topic is still an active area of research. Most proposed unit root tests

are parametric approaches based on the least squares estimator in an AR model. Under

the random walk hypothesis non-standard limiting distributions appear. Classic and more

recent references are Dickey and Fuller (1979), Rao (1978, 1980), Evans and Savin (1981),

Chan and Wei (1987, 1988), and Phillips and Perron (1988), Stock (1994a), Saikkonen

and Lütkepohl (2003), and Lanne and Saikkonen (2003). Nonparametric tests have been

studied by Kwiatkowski et al. (1992), Bierens (1997), Breitung (2002), and Giraitis et al.

(2003). The KPSS test, proposed in the first paper and also studied in detail in the lat-

ter two articles, avoids a detailed specification of the process. It can be easily used for

testing both the null hypothesis of stationarity against the unit root alternative, and vice

versa, and, as shown by simulations, is considerably more robust in terms of type I error

than most parametrically motivated tests. Thus we use that statistic as a starting point

to develop detection procedures which can be used to detect a change from I(0) (covering

stationarity) to I(1) (covering random walks), and vice versa. Similar detection procedures

related to the Dickey-Fuller statistic, which is often more powerful but can be affected by

severe size distortion, will be studied by the author in a separate paper in detail (Steland,

2005d).

As an example of a simple change-point model (regime switching model) capturing this

feature consider

Yn+1 = φnYn + εn where

 φn = 1, n = 1, . . . , bNϑc − 1,

|φn| < 1, n = bNϑc, . . . , N,

with mean-zero error terms {εn} and a change-point parameter ϑ ∈ (0, 1). Until the change

the in-control model of a I(1) process holds. This model is a special case of a I(1)-to-

I(0) change-point model studied in this article. If φn = φ ∈ [−1, 1] Lai and Siegmund
3



(1983) studied fixed accuracy estimation of an AR parameter assuming i.i.d. error terms

by sampling until the Fisher information exceeds a constant. Allowing for dependent errors,

we consider a different setup and study truncated stopping times of the type SN = min{1 ≤

n ≤ N : TN,n < c} for some control statistic, TN,n, and a control limit (critical value) c,

where monitoring stops latest at the Nth observation. That maximum sample size, N ,

plays the role of a time horizon where a decision is made in any case; if no signal is given,

the in-control model (null hypothesis) is accepted as a plausible model, otherwise one stops

concluding that a change occurred and further measures may be in order. We stop latest at

N , since often the assumption implicit to many classic monitoring procedures with random

sample size, namely that a process can and should be monitored forever, is unrealistic, and

approaches allowing to specify a time horizon may be more appropriate in many cases. For

example, consider financial portfolios. Continuous or pseudo-continuous (daily) trading is

often not feasible, due to cost constraints and because identification of mid- and long-term

investment chances requires time- and cost-intensive analyses on a quarterly to yearly

basis. Between these analyses one should apply monitoring rules with time horizon to

trigger additional updates, risk hedges, or other measures. Having approximations to the

distributions of the control statistic and the monitoring rule (stopping time) for large N

are therefore of interest, thus motivating to assume N →∞ for asymptotic studies.

To allow the design of procedures satisfying arbitrary constraints, e.g. prespecified type

I error, average run length (ARL) or median run length, we establish the limiting laws

which are functionals of Brownian motion or the Ornstein-Uhlenbeck process. Besides

the important change-point models mentioned above, we consider pure random walks,

stationary processes, local trend-stationary processes, and the local-to-unity model, where

a sequence of models is considered which converges to a random walk, as the maximum

sample size, N , tends to ∞.

Let us briefly comment on other related work. The nonparametric detection of a change in

the mean of a stationary time series based on kernel-weighted averages and the problem of

optimal kernel choice has been studied by Steland (2004a, 2005a). For the related problem
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to detect a change in the mean of a random walk see Steland (2005b). A posteriori methods,

where observations after the change are also available, have been studied by Ferger (1993,

1995), Hušková (1999) and Hušková and Slaby (2001). For an approach based on jump-

preserving statistics aiming at detecting quickly large shifts see Pawlak, Rafaj lowicz and

Steland (2004) and Steland (2005c). The problem to detect changes in a linear model has

been recently studied by Horváth et al. (2004) using CUSUMs of residuals.

Retrospective change-point detection allowing for time series data has been studied quite

extensively by many authors. Krämer and Ploberger (1992) study partial sums of OLS

regression residuals to detect structural changes. Bai (1994) established weak convergence

of the sequential empirical process of ARMA(p, q)-residuals and constructed a CUSUM-

type statistic to detect a change in the distribution of the innovations. Noting that, e.g.,

ML estimates usually can be written as arithmetic means of stationary martingale dif-

ferences, Lee et al. (2003) studied a CUSUM procedure to detect changes in parametric

time series models. For work on structural breaks and changes in the trend function in

integrated variables, we refer to Nyblom (1989), Perron (1991), Vogelsang (1997), Hansen

and Johansen (1997), and Bai, Lumsdaine and Stock (1998). For further references to the

extensive literature about these issues we refer to the references given in these papers.

The paper is organised as follows. In Section 1 we explain the proposed monitoring pro-

cedure and basic assumptions. Functional central limit theorems (FCLTs) under general

conditions are given in Section 2. Change-point problems for a change from I(0) to I(1),

and vice versa, are discussed in Section 3. Section 4 provides Monte Carlo results to assess

the accuracy and performance of the considered stopping times demonstrating that the

procedure works very reliable and often can detect stationarity earlier than a fixed sample

test, and that using a weighting scheme improves the detection of a change-point.
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1. Preliminaries, method, and assumptions

We will use the following nonparametric definitions of the notions I(0) and I(1). A time

series {Yn} is called I(0), denoted by Yn ∼ I(0), if

(1) N−1/2

bNsc∑
i=1

Yi ⇒ σB(s), s ∈ [0, 1],

holds for some constant 0 < σ <∞. Here and throughout the paper bxc denotes the floor

function, B(s), s ∈ [0, 1], denotes Brownian motion, and ⇒ stands for weak convergence

in the space D[0, 1] of all right-continuous functions with left-hand limits equipped with

the Skorohod topology given by the Skorohod metric d. For that approach to weak conver-

gence we refer to Billingsley (1968) and Prigent (2003). In terms of mixing and moment

conditions, a sufficient condition for (1) is, e.g., that {Yn} is a stationary α-mixing se-

quence with E|Y1|2+δ < ∞ and
∑

k α(k)2/(2+δ) < ∞ for some δ > 0 where α(k) are the

mixing coefficients (e.g. Herrndorf (1985)). Some of our limit theorems assume (1) under

additional weak regularity conditions. We will formulate these conditions where needed.

{Yn} is integrated of order 1, denoted by Yn ∼ I(1), if

(2) N−1/2YbNsc ⇒ σB(s), s ∈ [0, 1],

as N → ∞, and the differences, ∆Yn = Yn − Yn−1, form a I(0) series. Note that our

definition of I(0) does not necessarily implies stationarity and allows for a certain degree

of dependence. The I(1) property is also quite general, covering classic random walks

Yn =
∑n

i=1 ui with mean-zero i.i.d. innovations {ut}, but, e.g., also allows for random

walks with dependent innovations ut satisfying a functional central limit theorem of the

type (1). However, long memory processes in the sense that
∑∞

k=−∞ |Cov (Y1, Y1+k)| = ∞

are not allowed.

In the literature the I(0) property often means that the time series is a linear process,∑∞
j=0 ψjZt−j, where {Zn} is a weak white noise sequence and the parameter sequence {ψj}

is absolutely summable with
∑

j ψj 6= 0. However, our definitions have been used by many
6



other researchers, e.g., Stock (1994b), and are appropriate to describe the classes of time

series which can be distinguished by the methods studied in this paper.

Let us now assume that the time series observations Y1, . . . , YN , N ∈ N, arrive sequentially

at ordered time points t1, . . . , tN . To simplify presentation we assume tn = n ∈ N, but

more general time designs can be handled as in Steland (2005b). It is known that a robust

nonparametric unit root test is given by considering the ratio of the dispersion of the

cumulated observations and the dispersion of the observations, cf. Kwiatkowski et al. (1992)

or Breitung (2002). Having in mind change-point models where the time series changes its

I(0) respectively I(1) property at some unknown time point, we introduce appropriate

kernel weights to avoid that past observations dominate the statistic. We first introduce

a sequential kernel-weighted variance-ratio process which is appropriate to detect I(0)

processes, and will then describe a modification to detect I(1). Define2 UN(s) = 0 for

s ∈ [0, 1/N) and

(3) UN(s) =
bNsc−3∑bNsc

i=1

(∑i
j=1 Yj

)2

Kh(i− bNsc)

bNsc−2∑bNsc
j=1 Y 2

j

, s ∈ [1/N, 1].

Kh(·) = K(·/h)/h, where K is a Lipschitz continuous density function with mean 0 and

finite variance, and h = hN > 0 is a sequence of bandwidth parameters satisfying

N/hN → ζ ∈ [1,∞),

as N → ∞. The definition of the kernel weights, Kh(i − bNsc), requires only a kernel

function K defined on (−∞, 0]. Thus, we can and will assume that K is symmetric around

0, otherwise put K(z) = K(−z), z > 0, if K is only defined for z ≤ 0. Clearly, UN depends

on the bandwidth parameter h. If K has support [−1, 1], UN is a function of the current

and the most recent h observations. However, our results allow for kernels with unbounded

support, e.g., the Gaussian kernel. To apply the procedure, one chooses the time horizon N

2In a previous version of this paper we scaled numerator and denominator by powers of N−1 instead of

bNsc−1. Simulations indicate that both version have very similar power properties. Scaling with bNsc−1

has the advantage that the values of the process needed to calculate the stopping time do not depend on

the maximum sample size N , but requires to put UN (s) = 0 for s ∈ [0, 1/N).
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and the bandwidth h, puts ζ = N/h, and uses the asymptotic distributional results given

in the subsequent sections as approximations.

Although technically not required, one usually employs kernels K(z) which are decreasing

in |z| and satisfy lim|z|→∞K(z) = 0, to ensure that past partial sums have smaller weights

than more recent ones. The technical role of the denominator is to estimate a nuisance

parameter summarising the influence of the dependence structure of the time series on the

asymptotic distribution of the numerator of UN if {Yn} is I(1).

If {Yn} is I(0), the numerator of UN has a different convergence rate, and one should also

modify the denominator of UN . Following Kwiatkowski et al. (1992) and others, let

(4) ŨN(s) = N−1

bNsc∑
i=1

(
i∑

j=1

Yj

)2

Kh(i− bNsc)
/
s2

Nm(s), s ∈ [0, 1],

where

s2
Nm(s) =

1

N

bNsc∑
i=1

Y 2
i + 2

m∑
k=1

w(k,m)
1

N

bNsc∑
i=1

YiYi+k, s ∈ [0, 1],

is the process version of the Newey-West HAC estimator. w(k,m) is a weighting function.

One may use the Bartlett window, w(k,m) = 1−k/m, as in Newey and West (1987) which

guarantees nonnegativity of s2
Nm(s). For consistency the rate m = o(N1/2) suffices under

general conditions, see Andrews (1991) where also various choices of the weighting function

are discussed. As shown in Giraitis et al. (2003), for Bartlett weights the rate m = o(N)

suffices under certain conditions.

Sequential I(0) detection: Assume the time series is I(1) before the change-point and I(0)

after the change. Noting that large values of UN(s) provide evidence for the unit root

hypothesis whereas small values indicate I(0), we propose the stopping time

RN = RN(c) = min{k ≤ n ≤ N : UN(n/N) < c},

with the convention min ∅ = N , for some critical value (control limit) c. k denotes the start

of monitoring. As supported by our simulations, one should choose k > 1 sufficiently large
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to avoid that the procedure starts with only a few observations. Thus, it is reasonable to

assume that

(5) k = bκNc, for some κ ∈ (0, 1),

although some of our theoretical results do not require that condition. The related fixed-

sample test rejects the null hypothesis H0 that {Yn} is a I(1) process in favour of the

alternative Ha that the time series is I(0) if RN < N . The associated type I error rate

is P0(RN < N), where P0 indicates that the probability is calculated assuming H0, i.e.,

Yn ∼ I(1). We propose to select c as follows. First fix size α ∈ (0, 1). Then choose c such

that the associated fixed-sample test has type I error rate α, i.e., P0(RN < N) = α. Our

asymptotic results can be used to obtain large sample approximations for c.

Noting that many classes of stationary time series considered in practice satisfy the I(0)

property (1), the proposed detection rule can be used to detect stationarity, if the appli-

cation suggests to consider the class of stationary I(0) time series.

Sequential I(1) (unit root) dection: Assume the time series starts as a (subset of a) station-

ary I(0) process which ensures that the Newey-West estimator is consistent (for conditions

see Theorem 2.2 (ii)), and changes its behavior to a I(1) process at a change-point (struc-

tural break). To detect the change one may use the stopping time

R̃N = R̃N(c) = min{k ≤ n ≤ N : ŨN(n/N) > c}

for some critical value c. The associated fixed-sample test rejects the null hypothesis H0 :

I(0)-stationarity in favour of Ha : I(1)-unit root, if R̃N < N . Again, one may choose the

control limit c to ensure that the type I error P0(R̃N < N) attains a nominal value α. Note

that now P0 indicates that the probability has to be calculated assuming that Yn ∼ I(0).

2. Asymptotic results for I(0) and I(1) processes

In this section we provide the asymptotic distribution theory of the processes UN and ŨN

and the related stopping times RN and R̃N by establishing FCLTs under various basic
9



distributional assumptions of interest. Particularly, these results can be used to obtain

approximate critical values by simulating from the limiting law and also justify to simulate

the procedures using normally distributed error terms.

2.1. Asymptotics for I(1) processes. The following result provides the asymptotic dis-

tribution of UN under the random walk hypothesis that the time series {Yn} is I(1). The

result in Breitung (2002, Proposition 3, p. 349) is obtained as a special case by letting

Kh(·) = 1 and s = 1. In general, the asymptotic distribution is a functional of the Brown-

ian motion, the kernel K, and the parameter ζ = limN→∞N/hN .

Theorem 2.1. Assume {Yn} is I(1) in the sense of (2), then

(6) UN(s) ⇒ U1(s) =
ζs−1

∫ s

0
K(ζ(r − s))

(∫ r

0
B(t) dt

)2
dr∫ s

0
B(r)2 dr

,

in D[κ, 1], as N →∞ with N/h→ ζ. The process U1 has continuous sample paths w.p. 1.

Proof. Clearly, we have

X1N(s) = bNsc−2

bNsc∑
i=1

Y 2
i ⇒ σ2s−2

∫ s

0

B(r)2 dr = X1(s).

Since K is Lipschitz continuous and N/h→ ζ, a more involved argument using the Skoro-

hod/Dudley/Wichura theorem shows that

X2N(s) = bNsc−3

bNsc∑
i=1

(
i∑

j=1

Yj

)2

Kh(ti − tbNsc)

can be approximated by a continuous functional of N−1/2YbNsc, and therefore

X2N(s) ⇒ ζs−3σ2

∫ s

0

(∫ r

0

B(t) dt

)2

K(ζ(r − s)) dr = X2(s),

as N → ∞. However, to conclude weak convergence of X2N(s)/X1N(s) we need joint

weak convergence of the pair (X1N(s), X2N(s)) in the space (D[κ, 1])2. By the Skoro-

hod/Dudley/Wichura theorem we may assume that the convergence of X1N(s) and X2N(s)

is in the supnorm. First, note that the finite-dimensional distributions of λ1X1N + λ2X2N

converge to the corresponding finite-dimensional distributions of λ1X1 +λ2X2, as N →∞,
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for any scalars (λ1, λ2) ∈ R2. Further, clearly, the sequence {(X1N(s), X2N(s)) : s ∈ [κ, 1]},

N ≥ 1, is tight, since both coordinate processes are tight. We obtain joint weak con-

vergence (X1N , X2N) ⇒ (X1, X2), N →∞, as elements of the function space (D([κ, 1]))2.

Now we can apply the continuous mapping theorem (CMT) to obtain X2N/X1N ⇒ X2/X1,

N →∞. Since K is Lipschitz continuous and integration is continuous, numerator and de-

nominator are continuous functions of s, w.p. 1. Hence U1(s) has continuous sample paths

w.p. 1. �

Remark 2.1. Observe that the theorem can be slightly extended to yield UN(s) ⇒ U1(s), as

N →∞, in D[0, 1], if U1(s) is defined for s ∈ (0, 1] by the right side of (6), and U1(0) = 0.

Nevertheless, in Theorem 2.1, and also in the sequel, for UN(s), ŨN(s), RN , and R̃N we

consider weak convergence in the space D[κ, 1], which suffices for our purposes.

In practical applications the time series is sometimes first demeaned or detrended. This

alters the asymptotic distribution as follows.

Remark 2.2. Suppose the procedure is applied to the residuals instead of the original

observations. For applications the most important cases are that the sample Y1, . . . , YN is

centered at its mean or detrended. In the former case Yi is replaced by

ε̂i = Yi −N−1

N∑
i=1

Yi, i = 1, . . . , N, (’demeaned’),

whereas in the latter one uses

ε̂i = Yi − β̂0 − β̂1i, i = 1, . . . , N, (’detrended’),

where β̂0 and β̂1 are the OLS estimators from a regression of Yi on the regressors (1, i).

Then the Brownian motion B in the formula for U1 has to be replaced by the tied-down

Brownian motion (Brownian bridge) Bµ(s) = B(s)− sB(1) when demeaning and

Bt(s) = B(s)− (4− 6s)

∫ 1

0

B(r) dr − (12s− 6)

∫ 1

0

rB(r) dr, s ∈ [0, 1],

when detrending.
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Corollary 2.1. Under the conditions of Theorem 2.1,

N−1RN
d→ min{κ ≤ s ≤ 1 : U1(s) < c}, N →∞.

Proof. Note that

N−1RN > x⇔ sup
s∈[κ,x]

UN(s) ≥ c

By the CMT

VN(x) = sup
s∈[κ,x]

UN(s) ⇒ sup
s∈[κ,x]

U1(s) = V (x),

N →∞, which implies that for all x ∈ R and all continuity points c > 0 of the distribution

function of V (x) we have

lim
N→∞

FN(x) = lim
N→∞

P (N−1RN ≤ x) = P ( sup
s∈[κ,x]

U1(s) < c) = F (x).

It remains to check whether V (x) may have atoms. Since U1 ∈ C[0, 1] w.p. 1, we may work

in the separable Banach space (C[0, 1], ‖ · ‖∞) and can apply Lifshits (1982, Theorem 2)

which asserts that the distribution of V (x) can have an atom only at the point

γx = sup
0≤t≤x: VarU1(t)=0

E(U1(t)) = 0,

equals 0 on (−∞, γx), and is absolutely continuous with respect to Lebesgue measure on

[γx,∞). Hence all c > 0 are continuity points of V (x). �

2.2. Asymptotics for I(0) processes. For weakly stationary I(0) time series {Yn} sat-

isfying a certain condition on the fourth-order moments, the variance-ratio process UN(s)

still has a non-degenerate limiting distribution if scaled with N . However, the limit de-

pends on a nuisance parameter summarizing the dependence structure. We consider both

mean-zero I(0) processes and I(0) processes which are disturbed by a local deterministic

alternative.

For the process ŨN(s) using a Newey-West type estimator to eliminate the nuisance pa-

rameter from the limit distribution, we use a weak mixing condition.

The first result considers stationary I(0) processes. The limit given in Kwiatkowski et al.

(1992, formula 14) is obtained as a special case if Kh(·) = 1, ζ = 1, and s = 1.
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Theorem 2.2. (i) Assume {Yn} is a weakly stationary mean zero I(0) process such

that {Y 2
n } is weakly stationary,

(7) γ2(k) = E(Y 2
1 Y

2
1+k) → 0, |k| → ∞.

Then

bNscUN(s) ⇒ U2(s) =
σ2

EY 2
1

s−1ζ

∫ s

0

B(r)2K(ζ(r − s)) dr,

in D[κ, 1], as N →∞. The process U2 has continuous sample paths w.p. 1.

(ii) Assume {Yn} is a strictly stationary α-mixing I(0) process such that EY 4ν
1 < ∞

and

(8)
∞∑

j=1

j2α(j)(ν−1)/ν <∞,

for some ν > 1. Then, if m/N1/2 = o(1),

ŨN(s) ⇒ Ũ2(s) = s−1ζ

∫ s

0

B(r)2K(ζ(r − s)) dr,

in D[κ, 1], as N →∞.

Proof. By assumptionN−1/2
∑bNsc

i=1 Yi ⇒ σB(s), asN →∞, where σ2 =
∑∞

k=−∞E(Y1Y1+k).

By the weak law of large numbers (Brockwell and Davis (1991), Theorem 7.1.1), (7) implies

that for fixed s ∈ [κ, 1]

VN1(s) = bNsc−1

bNsc∑
i=1

Y 2
i

P,L2→ EY 2
1 = V1,

13



as N → ∞, where
P,L2→ means that the convergence holds in probability and in quadratic

mean, i.e., in the L2-space. The limit is a.s. constant in s. Further,

VN2(s) =
N

bNsc
N−1

bNsc∑
i=1

(
i∑

j=1

Yj

)2

Kh(ti − tbNsc)

=
N

bNsc
(N/h)

∫ s

0

N−1/2

bNrc∑
j=1

Yj

2

K(bNrc/h− bNsc/h) dr

⇒ σ2s−1ζ

∫ s

0

K(ζ(r − s))B(r)2 dr = V2(s),

if N → ∞. Billingsley (1968, Theorem 4.4) now implies weak convergence of the pair

(VN1, VN2), and an application of the CMT yields VN2/VN1 ⇒ V2/V1 = U2, as N → ∞.

SinceK is Lipschitz continuous, the process U2 has continuous sample paths w.p. 1. To show

(ii) the proof is modified as follows. By Andrews (1991, Lemma 1) the mixing condition

(8) ensures his Assumption A. Hence, if m/N1/2 = o(1), s2
Nm(s)

P→ sσ2, as N →∞, which

implies weak convergence to the non-stochastic function sσ2, s ∈ [κ, 1]. �

Remark 2.3. Statement (i) implies that the UN statistic is consistent against stationary

alternatives.

Remark 2.4. Consistency of s2
Nm for Bartlett weights has also been shown under the

weaker condition m/N = o(1) provided that
∑

j |γj| <∞, γj = Cov (Y1, Y1+j), and

sup
h

∞∑
r,s=−∞

|κ(h, r, s)| <∞

where

κ(h, r, s) = E[(Yk − µ)(Yk+h − µ)(Yk+r − µ)(Yk+s − µ)]− (γhγr−s + γrγh−s + γsγh−s)

is the fourth order cumulant (Giraitis et al. (2003), Theorem 3.1.). This condition holds,

e.g., for linear processes with absolutely summable coefficients.
14



Remark 2.5. In case that the time series is demeaned or detrended first, again the Brown-

ian motion in the representation of U2 has to be replaced by the tied-down Brownian motion

Bµ or the process Bt.

Again, we have the following corollary for the related stopping time.

Corollary 2.2. Under the conditions of Theorem 2.2 we have

N−1R̃N
d→ min{κ ≤ s ≤ 1 : Ũ2(s) > c}, N →∞.

So far we considered mean-zero time series. The following theorem provides sufficient con-

ditions for a well-defined limit for a I(0) series with a (local) nonparametric trend.

Theorem 2.3. Suppose {Yn} satisfies Yn = mn + un,n ∈ N, h > 0, where {un} satisfies

the conditions of Theorem 2.2 (i) with the Yn replaced by un’s, and {mN,n} is an array of

non-negative constants with mN,n ≤M for all N, n, such that

(i) N−1/2
∑bNsc

i=1 ui ⇒ σB(s), as N →∞, for some 0 < σ <∞,

(ii) sup0≤s≤1 |N−1/2
∑bNsc

i=1 mN,i − µ(s)| → 0, as N →∞.

for some deterministic drift µ(s) ∈ D[0, 1], which is continuous at 0. Then

bNscUN(s) ⇒ Uµ
2 (s) =

1

sE(Y 2
1 )
ζ

∫ s

0

[µ(r) + σB(r)]2K(ζ(r − s)) dr, in D[κ, 1],

as N →∞. If µ ∈ C[0, 1], then Uµ
2 has continuous sample paths w.p. 1.

Proof. Using Jacod and Shiryaev (2003, VI, Proposition 1.22, p. 329) conditions (i) and (ii)

yield N−1/2
∑bNsc

i=1 Yi ⇒ µ(s)+σB(s), in D[0, 1], as N →∞. The proof follows by a simple

modification of the proof of the previous theorem by noting that for the denominator we

have

bNsc−1

bNsc∑
i=1

Y 2
i = bNsc−1

bNsc∑
i=1

u2
i + 2bNsc−1

bNsc∑
i=1

mN,iui + bNsc−1

bNsc∑
i=1

m2
N,i

P→ EY 2
1 ,
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as N → ∞, because mN,i ≤ M for all i and N for some constant M > 0 implies

N−1
∑

im
2
N,i ≤M/N1/2

∑
i(mN,i/N

1/2) = o(1). �

We illustrate the conditions (i) and (ii) by a local change-point model, where starting at

a change-point bNϑc the mean is no longer 0 but positive and induced by a non-negative

function m0 : R → R+. Particularly, (truncated) linear trends as m0(x) = ax if x ∈ [0, 1]

and m0(x) = 0 otherwise for some a > 0 are allowed.

Example 2.1. Assume YN,n = mN,n + un with

mN,n = m0([n− bNϑc]/N)N−1/2.

Here we assume that the function m0 : R → R satisfies m(s) = 0 for s < 0, is right-

continuous, non-negative with bounded variation, and has at most finitely many jumps.

Further, m0 is assumed to be Lipschitz continuous and bounded between the jumps, and

is integrable, i.e.,
∫∞

0
m0(t) dt < ∞. Finally, we assume that there is some t∗ > 0 with

m0(t) > 0 for t ∈ (0, t∗). It is easy to see that the conditions (i) and (ii) of Theorem 2.3

are satisfied. The limiting mean function is given by

µ(s) =

∫ s

0

m0(r − ϑ) dr,

and one obtains

N−1/2

bNsc∑
i=1

YN,i ⇒
∫ s

0

m0(r − ϑ) dr + σB(s),

as N →∞.

Remark 2.6. By making use of the Karhunen-Loève representation

B(t)
d
=
√

2
∞∑

n=0

sin((n− 1/2)πt)

(n− 1/2)π
Zn, t ∈ [0, 1],

where {Zn} are i.i.d. N(0, 1)-random variables, cf. Ito and Nisio (1968), we also represented

the limiting distributions as simple rational functions of infinite quadratic forms of the type

∞∑
n,m=0

γmn(s)ZnZm.
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Following a referee, we omit these results here, since we did not use them for our simula-

tions.

2.3. Asymptotics for local-to-unity processes. Let us now consider the asymptotic

behaviour of UN under a model which is nearly I(1). More precisely, we consider a sequence

of models which converges to an I(1) model yielding what is called local-to-unity asymp-

totics. The local-to-unity model assumes that we are given an array {YN,n : N ∈ N, n ∈ N}

satisfying

(9) YN,n+1 = (1 + a/N)YN,n + un, 1 ≤ n ≤ N, N ∈ N,

where a ∈ R and {un} is a I(0) process. Thus, {YN,n} converges to a random walk,

as N → ∞. Note that both positive and negative values for a are allowed. Under the

local-to-unity model an Ornstein-Uhlenbeck process appears in the limit process instead

of the Brownian motion. It has been proposed in the literature to use estimates for a and

to use the corresponding asymptotic distributions under the local-to-unity asymptotics as

approximations. The analyses of Stock and Watson (1998, Table 7) for the US annual series

of the GDP, consumption, and investment imply estimates for a in the region between −15

and −3.

The following theorem contains Breitung (2002, Proposition 4, p. 350) as a special case.

Theorem 2.4. Assume the local-to-unity model (9) holds. Then

UN(s) ⇒ UZ(s) =
ζs−1

∫ s

0

(∫ r

0
Z(t; a) dt

)2
K(ζ(s− r)) dr,∫ s

0
Z(r; a)2 dr

,

in D[κ, 1], as N →∞, where

Z(s; a) =

∫ s

0

ea(s−r) dB(r), s ∈ [0, 1],

is an Ornstein-Uhlenbeck process. Further,

N−1RN
d→ min{κ ≤ s ≤ 1 : UZ(s) < c}, N →∞.
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Remark 2.7. The stochastic integral appearing here is of the type I(s) =
∫ s

0
F (s, r)B(dr),

F (s, r) non-stochastic, strictly monotone in r and bounded with bounded variation. It is a

special case of the Ito integral. However, since the Stieltjes integral
∫ s

0
B(r)F (s, dr) exists,

I(s) can also be defined by the integration by parts formula∫ s

0

B(r)F (s, dr) = F (s, r)B(r)|r=s
r=0 −

∫ s

0

F (s, r−)B(dr),

where F (s, r−) = limx↑r F (s, r). For this approach see Shorack and Wellner (1986, p. 127)

or Gill (1989, p. 110).

Proof. Put Wn =
∑n

i=1 ui, n ∈ N, and SN(s) = N−1/2
∑bNsc

i=1 ui, s ∈ [0, 1]. By assumption

SN(s) ⇒ σB(s) in D[0, 1], as N →∞. We may assume σ = 1. Note that N−1/2YN,bNsc can

be written as a stochastic Stieltjes integral, namely

N−1/2YN,bNsc = N−1/2

bNsc∑
i=1

(1 + a/N)bNsc−iui

=

bNsc∑
i=1

(1 + a/N)bNsc−iN−1/2[Wi −Wi−1] =

∫ s

0

eN(r; s) dSN(r),

where the integrand, eN(r; s) = (1 + a/N)bNsc−bNrc, (r, s) ∈ I = {(u, v) ∈ [0, 1]2 : 0 ≤

u ≤ v, 0 ≤ v ≤ 1}, is a step function in r. The fact that log[(1 + a/N)bNsc−bNrc/ea(s−r)] =

a(s−r)+o(1) uniformly in (r, s) ∈ I implies that eN(r; s) converges uniformly in (r, s) ∈ I

to e(r; s) = ea(s−r). Particularly, there is some constant C such that |eN(r; s)| ≤ C for all

(r, s) ∈ I. Further, since for a < 0 and fixed s ∈ [0, 1], the variation
∫
|deN(·; s)| of eN(r; s)

as a function of r ∈ [0, s] is given by∫
|deN(·; s)| =

bNsc−1∑
i=0

[eN((i+ 1)/N ; s)− eN(i/N ; s)]

= (1 + a/N)bNsc−bNrc − (1 + a/N)bNsc → ea(s−r) − eas.

It follows that sups∈[0,1]

∫
|deN(·; s)| <∞. To estimate

sup
s∈[0,1]

∣∣∣∣∫ s

0

eN(s; r) dSN(r)−
∫ s

0

ea(s−r) dB(r)

∣∣∣∣ ,
18



we use the decomposition∫ s

0

eN(r; s) dSN(r)−
∫ s

0

e(r; s) dB(r) =

∫ s

0

(eN(r; s)−e(r; s)) dB(r)+

∫ s

0

eN(r; s) d(Sn(r)−B(r)).

Of course,

sup
s∈[0,1]

∣∣∣∣∫ s

0

eN(r; s) dB(r)−
∫ s

0

e(r; s) dB(r)

∣∣∣∣ P→ 0,

as N →∞, see, e.g., Shorack and Wellner (1986, p. 130). Integration by parts yields

sup
s∈[0,1]

∣∣∣∣∫ s

0

eN(r; s) d(SN(r)−B(r))

∣∣∣∣ ≤ 2C‖SN −B‖∞ + ‖SN −B‖∞ sup
s∈[0,1]

∫
|deN(·; s)|.

These estimates imply

N−1/2YN,bNsc =

∫ s

0

eN(r; s) dSN(r) ⇒
∫ s

0

ea(s−r) dB(r) = Z(s; a),

as N →∞. We obtain

VN1(s) =
N2

bNsc2
N−2

bNsc∑
i=1

Y 2
N,i

=
N2

bNsc2
∫ s

0

(N−1/2YN,bNrc)
2 dr

⇒ σ2s−2

∫ s

0

Z(r; a)2 dr = V1(s),

in D[κ, 1], as N →∞, and, using the same arguments as in the proof of Theorem 2.1

VN2(s) =
N3

bNsc3
N−3

bNsc∑
i=1

(
i∑

j=1

YN,j

)2

Kh(ti − tbNsc)

=
N3

bNsc3
N−2

∫ s

0

bNrc∑
j=1

YN,j

2

Kh(tbNrc − tbNsc) dr

=
N3

bNsc3
Nh−1

∫ s

0

(∫ r

0

N−1/2YN,bNtc dt

)2

K(bNrc/h− bNsc/h) dr

⇒ ζσ2s−3

∫ s

0

(∫ r

0

Z(t; a) dt

)2

K(ζ(s− r)) dr = V2(s),
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in D[κ, 1], as N → ∞. Noting that VN1 and VN2 are functionals of N−1/2YN,bNsc up to

negligible terms, we obtain (VN1, VN2) ⇒ (V1, V2), as N → ∞. Hence the CMT yields the

assertion. �

3. Change-point models

The question arises how the sequential processes and stopping times considered above

behave under a change-point model where after a certain fraction of the data the time

series changes. In this section we consider both change-point models, a change from I(0)

to I(1) and a change from I(1) to I(0). To design a monitoring procedure (stopping rule)

having well-defined properties under the null hypothesis of no change, the results from

the previous section about the asymptotic distribution of UN(s) (under a I(1) process)

and bNscUN(s) or ŨN(s) (under a I(0) process) apply. In particular, for the I(0)-to-I(1)

change-point model monitoring can be based on the stopping time R̃N calculated from

the process ŨN(s) which has the well-defined limit Ũ2(s) for I(0) processes, i.e., under the

null hypothesis of no change. To design a stopping rule for a I(1)-to-I(0) change-point

model one would rely on the stopping time RN and its asymptotic distribution, which is a

functional of U1(s), the well-defined limit of UN(s) for I(1) processes.

We will now study the asymptotic laws under the general case of a change, i.e., under the

alternative hypothesis that a change-point exists. For both change-point models the inte-

grated subseries of the time series Y1, . . . , YN determines the proper scaling, since in both

models UN(s) has a well-defined limit, whereas bNscUN(s) is degenerated. In this sense, the

change-point problems are qualitatively different and the situation is not symmetric. The

I(1)-to-I(0) is smoother in the sense that the same process can be considered to study the

behaviour under the no-change hypothesis and the alternative of a change-point, whereas

for the I(0)-to-I(1) problem the scaling has to be changed.

3.1. A change from I(0) to I(1). Let us assume that the time series is a mean-zero

fourth-order I(0) process satisfying condition (7) at the beginning, but becomes a random

walk, i.e., I(1) process, starting at the time point bNϑc, where ϑ ∈ (0, 1). We consider
20



the following change-point model. Let {un : n ≥ 0} be a mean-zero weakly stationary I(0)

time series such that all moments of order 4 exists and are stationary, and condition (7) is

satisfied when the Yn are replaced by un’s. Further assume that

(10) Yi =

 ui, i = 1, . . . , bNϑc − 1

Yi−1 + ui, i = bNϑc, . . . , N.

Then, Y1, . . . , YbNϑc−1 ∼ I(0) and YbNϑc, . . . , YN ∼ I(1), i.e., at the change-point bNϑc the

time series changes from stationarity to a I(1) series.

Lemma 3.1. Under the change-point model (10) we have∫ s

0

N−1/2YbNtc dt⇒ σ

∫ s

min(s,ϑ)

B(t) dt, N →∞.

in D[0, 1].

Proof. Define

WN(s) =


∫ s

0

√
NYbNtc dt, 0 ≤ s < ϑ,∫ ϑ

0

√
NYbNtc dt+N−1/2(YbNsc − YbNϑc), ϑ ≤ s ≤ 1.

Then, WN ∈ D[0, 1] for each N ∈ N. By construction of WN , we have WN ⇒ σB, N →

∞, in D[0, 1], if (10) holds. By the Dudley/Skorohod/Wichura representation theorem in

general metric spaces, there exists a probability space with equivalent versions W̃N and B̃

such that d(W̃N , B̃) → 0 a.s, for N →∞. Since B̃ ∈ C[0, 1], we even have ‖W̃N−B̃‖∞ → 0

a.s., N →∞. Thus, we may assume

sup
0≤s≤ϑ

∣∣∣∣N1/2

∫ s

0

YbNtc dt− σB(s)

∣∣∣∣ a.s.→ 0, N →∞,

and

sup
ϑ≤s<1

|N−1/2(YbNsc − YbNϑc)− σ[B(s)−B(ϑ)]| a.s.→ 0, N →∞.

Note that for ϑ ≤ s ≤ 1 we have∫ s

0

N−1/2YbNtc dt = N−1

∫ ϑ

0

N1/2YbNtc dt+

∫ s

ϑ

N−1/2(YbNtc − YbNϑc) dt

+N−1/2YbNϑc(s− ϑ),
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which should be close to σB(s)/N + σ
∫ s

ϑ
B(t) dt, whereas for 0 ≤ s < ϑ the second and

third term vanish. Indeed, if we define the D[0, 1]-valued process

AN(s) =

 σB(s)/N, 0 ≤ s < ϑ,

σB(ϑ)/N + σ
∫ s

ϑ
B(t) dt, ϑ ≤ s ≤ 1,

and observe that AN(s) ⇒ A(s;ϑ), as N →∞, where

A(s;ϑ) = σ

∫ s

min(s,ϑ)

B(t) dt, 0 ≤ s ≤ 1,

we obtain the estimate

sup
s∈[0,1]

∣∣∣∣∫ s

0

N−1/2YbNtc dt− AN(s)

∣∣∣∣ ≤ N−1 sup
s∈[0,ϑ)

∣∣∣∣∫ s

0

N1/2YbNtc dt− σB(s)

∣∣∣∣
+N−1 sup

s∈[ϑ,1]

∣∣∣∣∫ ϑ

0

N1/2YbNtc dt− σB(ϑ)

∣∣∣∣
+ sup

s∈[ϑ,1]

∣∣∣∣∫ s

ϑ

N−1/2{YbNtc − YbNϑc} dt−
∫ s

ϑ

σB(t) dt

∣∣∣∣
+ sup

s∈[ϑ,1]

∣∣∣∣N−1/2YbNϑc(s− ϑ)

∣∣∣∣ a.s.→ 0,

as N → ∞. Whereas the first three terms are obvious, let us consider the last one. Ac-

cording to (10) we have

m4 = E|YbNϑc|4 = E|ubNϑc−1 + ubNϑc|4 <∞,

since E|u1|4 <∞ by assumption. Therefore,

E

(
sup

s∈[ϑ,1]

∣∣N−1/2YbNϑc(s− ϑ)
∣∣)4

= E(N−1/2|YbNϑc|(1− ϑ))4

≤ m4(1− ϑ)4

N2
.

By Markov’s inequality we can conclude that for any ε > 0

∞∑
N=1

P

(
sup

s∈[ϑ,1]

∣∣N−1/2YbNϑc(s− ϑ)
∣∣ > ε

)
≤

∞∑
N=1

m4(1− ϑ)4

ε4N2
<∞.
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Now Serfling (1980, Theorem 1.3.4) yields

sup
s∈[ϑ,1]

|N−1/2YbNϑc(s− ϑ)| a.s.→ 0,

as N →∞. The convergence

sup
s∈[0,1]

∣∣∣∣∫ s

0

N−1/2YbNtc dt− AN(s)

∣∣∣∣ a.s.→ 0,

as N → ∞, implies convergence in the metric d, which in turn implies weak convergence

of the original versions, see e.g. Billingsley (1968, Theorem 4.3) or van der Vaart (1998,

Theorem 18.10). �

Theorem 3.1. Assume the I(0)-to-I(1) change-point model (10) holds. Then for UN as

defined in (3) we have

UN(s) ⇒ U01,ϑ(s) =

 0, s ∈ [0, ϑ),
s−1ζ

R 1
0 1(r≥ϑ)[

R r
ϑ B(t) dt]2K(ζ(r−s)) dr

1(s≥ϑ)
R s

ϑ [B(t)+B(ϑ)]2 dt
, s ∈ [ϑ, 1],

as N →∞, yielding

N−1RN
d→ min{κ ≤ s ≤ 1 : U01,ϑ(s) > c},

as N →∞.

Proof. An easy application of Lemma 3.1 yields for the numerator of UN

bNsc−3

bNsc∑
i=1

( i∑
j=1

Yj

)2

Kh(ti − tbNsc)

=
N3

bNsc3
N

h

∫ s

0

(∫ r

0

N−1/2YbNtc dt

)2

K([bNrc − bNsc]/h)

⇒ s−3ζ

∫ s

ϑ

[
σ

∫ r

ϑ

B(t) dt

]2

K(ζ(r − s)) dr,

in D[κ, 1], as N →∞. Since for s ≥ ϑ

bNsc−2

bNsc∑
i=bNϑc

Y 2
i =

N2

bNsc2
N−1

∫ s

ϑ

Y 2
bNtc dt⇒ s−2σ2

∫ s

ϑ

[B(t) +B(ϑ)]2 dt,
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as N →∞, and, by stationarity of Y1, . . . , YbNϑc−1, N
−1
∑bNsc

i=1 Y 2
i → sσ2 if s < ϑ, for the

denominator of UN we obtain

bNsc−2

bNsc∑
i=1

Y 2
i ⇒ 1(s ≥ ϑ)s−2σ2

∫ s

ϑ

[B(t) +B(ϑ)]2 dt,

in D[κ, 1], as N →∞. Note that the denominator is positive w.p. 1. Using the arguments

given in detail in the proof of Theorem 2.1 and applying the CMT yields the assertions. �

3.2. A change from I(1) to I(0). Now assume that the first part of the time series is a

random walk, i.e. I(1), and changes to a I(0) process at the change-point bNϑc for some

fixed constant ϑ ∈ (0, 1), i.e.,

(11) Yi =


∑i

j=0 uj, i = 0, . . . , bNϑc − 1,

ηui, i = bNϑc, . . . , N,

Here η > 0 is a scale parameter, which is briefly discussed at the end of this section, and

{un} is a weakly stationary mean zero I(0) time series satisfying condition (7).

Model (11) implies that the variance function is linear with positive slope before the change

and constant after the change.

Lemma 3.2. Assume the change-point model (11) holds. Then we have∫ s

0

N−1/2YbNtc dt⇒ σ

∫ min(s,ϑ)

0

B(t) dt, N →∞.

Proof. Noting that N−1/2YbNtc ⇒ σB(t) if t < ϑ,
∫ s

ϑ
N1/2YbNtc dt ⇒ ησ[B(s) − B(ϑ)] if

ϑ ≤ s ≤ 1, and∫ s

0

N−1/2YbNtc dt =

∫ ϑ

0

N−1/2YbNtc dt+N−1

∫ s

ϑ

N1/2YbNtc dt,

if ϑ ≤ s ≤ 1, the lemma is shown analogously to Lemma 3.1, if we define the D[0, 1]-valued

process

Z̃N(s) =

 σ
∫ s

0
B(t) dt, 0 ≤ s < ϑ,

σ
∫ ϑ

0
B(t) dt+ ση/N [B(s)−B(ϑ)], ϑ ≤ s ≤ 1,
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and note that Z̃N(s) ⇒ σ
∫ min(s,ϑ)

0
B(t) dt. Note that this limit process does not depend on

η. �

Theorem 3.2. Under the I(1)-to-I(0) change-point model (11) we have

UN(s) ⇒ U10,ϑ(s) =

s−1ζ
∫ s

0

(∫ min(r,ϑ)

0
B(t) dt

)2

K(ζ(r − s)) dr∫ min(s,ϑ)

0
B(t)2 dt

,

as N →∞, yielding

N−1RN
d→ min{κ ≤ s ≤ 1 : U10,ϑ(s) > c},

as N →∞.

Proof. The theorem is proved using the same approach as in Theorem 3.1. We indicate the

differences. First note that by Lemma 3.2

bNsc−3

bNsc∑
i=1

( i∑
j=1

Yj

)2

Kh(ti − tbNsc) =
N3

bNsc3
N

h

∫ s

0

(∫ r

0

N−1/2YbNtc dt

)2

K([bNrc − bNsc]/h) dr

⇒ s−1ζ

∫ s

0

(
σ

∫ min(r,ϑ)

0

B(t) dt

)2

K(ζ(r − s)) dr,

as N →∞. To handle the denominator of UN observe that{∫ s

0

N−1Y 2
bNtc dt : 0 ≤ s < ϑ

}
⇒
{
σ2

∫ s

0

B(t)2 dt : 0 ≤ s < ϑ

}
.

For s ≥ ϑ we obtain

bNsc−2

bNsc∑
j=1

Y 2
j =

N2

bNsc2

N−2

bNϑc−1∑
j=1

Y 2
j +N−2η2

bNsc∑
j=bNϑc

u2
j

⇒ s−2σ2

∫ ϑ

0

B(t)2 dt

yielding

{
bNsc−2∑bNsc

j=1 Y 2
j : s ∈ [0, 1]

}
⇒
{
s−2σ2

∫ min(s,ϑ)

0
B(t)2 dt : s ∈ [0, 1]

}
, as

N →∞ �

Remark 3.1. Note that U10,ϑ does not depend on η. Hence, the detection procedure given

by RN is asymptotically robust w.r.t. changes of the variance.
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4. Simulations

We perform Monte Carlo simulations to investigate the actual finite sample performances of

the proposed monitoring procedure. We first consider the statistical properties of the pro-

cedures, if the time series is either I(0) or I(1). In a second step we study the performance

under change-point models. All simulations are based on 50,000 repetitions.

4.1. Models without change-point (either I(0) or I(1)). The first model we use for

the simulations is as in Stock (1994a), an AR(1) process with MA(1) errors,

Y0 = 0, Yn = φYn−1 + en − βen−1, n = 1, . . . , N,

where φ and β are parameters and {en} i.i.d. N(0, 1) innovations. The parameter values

were chosen to be φ = 1, 0.95, 0.9, 0.7 and β = −0.8,−0.5, 0, 0.5, 0.8. We investigate the

following quantities: Firstly, size and power of the test which rejects H0 if the monitoring

procedure gives a signal. Second, the average run length (ARL) defined as E(RN) and

E(R̃N), respectively, i.e., the average number of observations until we get a signal. Addi-

tionally, we provide the conditional ARL given that the procedure gives a signal (CARL)

defined as, e.g., E(RN |RN < N). That quantity informs us how fast the procedure reacts if

it reacts at all. We use a maximum sample size of N = 250. The bandwidth was chosen as

h = 50. Simulated asymptotic critical values were used with ζ = N/h = 5 to attain a nomi-

nal rejection probability of 5%. The Gaussian and Epanechnikov kernels were investigated,

which attach smaller weights to past summands than to more current ones. We found by

simulations not reported here that the start of monitoring, k, should be proportional to h,

and k = 1.5h yields a reasonable rule of thumb for ζ = 5.

Table 1 presents our results for the proposed procedure RN to detect stationarity, using

the Epanechnikov kernel for weighting. Here H0 : I(1)-unit root is given by φ = 1. The

results are generally supportive of the theory developed in the paper. We do not report the

results for the Gaussian kernel, since they were quite similar. The first three rows present

the actual sizes for different values of β. It can be seen that there is only a slight size

distortion, similar as for the KPSS fixed-sample test. The remaining rows provide power
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estimates, CARLs, and ARLs. Overall, it appears that the monitoring approach provides

a powerful method to detect quickly stationarity, as can be seen from the CARL values in

parentheses. In many cases stationarity can be detected very early and it is not necessary

to wait until the time horizon N .

We next consider the properties of the procedure R̃N to detect a unit root. Here H0 :

I(0)-stationarity corresponds to |φ| < 1 in our simulation model. For the Newey-West

estimator we have to choose the lag truncation parameter m. We considered the fol-

lowing choices of m as a function of the (current) sample size: m3 = b0.75n1/3 + 0.5c,

m4 = b4(n/100)1/4 + 0.5c, and m12 = b12(n/100)1/4 + 0.5c with n = bNκc, . . . , RN ≤ N

denoting the time point where the estimator has to be calculated. The rules m4 and m12

have also been used by Kwiatkowski et al. (1992), for m3 see Stock and Watson (2003, eq.

13.17). For φ = 0 and β = −0.8,−0.5, 0, 0.5 we simulated the type I error for all choices

of m. As can be seen from the top rows of Table 2, the difference seems negligible. For the

remaining cases given by φ = 0.2, 0.6, 0.9, 1 we used m4. The last three rows of the table

provide the performance to detect the unit root given by φ = 1. Overall, the empirical

rejection rates and ARL/CARL values indicate that for moderate positive autocorrelation

(0 ≤ φ ≤ 0.6) the procedure has moderate size distortion. But, as expected, for φ close to

1 the procedure overreacts. The power is uniformly high for all values of β studied here.

4.2. Change-point models. We also investigated the performance of the detection meth-

ods RN and R̃N in change-point models. Of particular interest is to study the influence of

the bandwidth h on the performance. To evaluate the rule RN (detection of stationarity),

we used the following specification of the change-point model given in the introduction,

Yn = φnYn−1 + εn where

 φn = 1, n = 1, . . . , bNϑc − 1,

φn = 0.5, n = bNϑc, . . . , N,

with N = 250. {εt} are i.i.d. N(0, 1)-innovations. The change-point parameter ϑ is chosen

as ϑ = 0.1, 0.5, 0.75, and the bandwidth as h = 125, 50, 25.
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Table 3 reports power, the average delay, defined as Emax(RN −bNϑc, 0), and the condi-

tional average delay given the method provides a signal, defined as E(RN |RN < N)−bNϑc,

which informs us how quickly the procedure reacts if it reacts at all. It can be seen that

there is only a negligible effect of the bandwidth h on the average delay, but a remarkable

positive effect on the conditional average delay and the statistical power to reject the unit

root hypothesis. Comparing h = 125 with h = 50 for ϑ = 0.1 and ϑ = 0.5 indicates that

large bandwidths provide high overall power but the signal often comes late. To detect the

change early smaller bandwidths seem to be better. Comparing with h = 10 shows that

CARL increases again. It seems, that for the setting studied here values between 25 and

50 provide reasonable results.

To investigate the detection rule R̃N (detection of a unit root), we used the same change-

point model as above, but with φn = 0.6 if n < bNϑc and φn = 1 if n ≥ bNϑc. This

means, before the change the process is AR(1) with autoregressive parameter 0.6, and

after the change we are given a pure random walk. The parameter ϑ was chosen as above

and h = 125, 50, 25, 10. As can be seen from Table 4, the detection performance is excellent

in terms of power, average delay, and conditional average delay. Results for h = 5 were

almost identical to h = 10 and are therefore omitted. Overall, small bandwidths increase

the power substantially and yield smaller delays.

4.3. An example. Figure 1 illustrates the detection performance of the proposed proce-

dure for a time series of length 250 which has a change-point. The first 100 observations

follow an AR(1) with coefficient φ = 0.8. After the change-point given by ϑ = 0.4, the

series is a random walk (φ = 1). We applied the procedure R̃N using the Epanechnikov

kernel, bandwidth h = 25, the lag selection rule m4, and an asymptotic 5% control limit

using ζ = 10. The change is detected at obs. 167.

28



0 50 100 150 200 250

−
10

−
5

0
5

Figure 1. A time series with a change-point at obs. 100 where the AR

coefficient changes from 0.8 to 1. The change is detected at obs. 161.

5. Software

User-friendly and platform independent JAVA software implementing the proposed meth-

ods, particularly providing asymptotic control limits, and example data sets can be down-

loaded from the author’s webpage.

6. Conclusions

Monitoring rules to detect quickly stationarity and unit roots based on a kernel-weighted

process related to the KPSS statistics are studied. Limiting distributions under various dis-

tributional assumptions including local-to-unity and change-point models are established.

Simulations indicate that the procedures share the moderate size distortion of the KPSS
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φ β

-0.8 -0.5 0 0.5 0.8

1 0.04 0.04 0.042 0.051 0.097

[171.9] [171.9] [171.7] [170.7] [165.2]

0.95 0.228 0.23 0.236 0.285 0.462

(101.2) (101.2) (100) (92.6) (70.7)

[158.2] [158] [157.3] [151.5] [126.9]

0.9 0.347 0.352 0.362 0.443 0.642

(92.2) (91.6) (90.2) (79.6) (52.2)

[146.3] [145.6] [144.3] [132.7] [96.2]

0.7 0.557 0.557 0.589 0.717 0.931

(69) (68.5) (64.5) (46.3) (22.4)

[116] [115.7] [109.9] [82.8] [33]

Table 1. Detecting stationarity using RN with ζ = 5: Empirical size respec-

tively power, CARL given a signal (in parentheses), and ARL (in brackets)

for various values of φ (AR parameter) and β (MA parameter).

test, but due to its weighting scheme controlled by a bandwidth parameter h the reaction

performance is substantially improved. Both, changes from I(0) to I(1) and changes from

I(1) to I(0) can be detected in many cases very early, if h is chosen appropriately.
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β

φ [lag rule] −0.8 −0.5 0 0.5

0 [m3] 0.036 0.035 0.023 0.001

0 [m4] 0.033 0.031 0.022 0.002

0 [m12] 0.016 0.017 0.017 0.005

0.2 0.039 0.038 0.03 0.005

[173.2] [173.3] [173.7] [174.8]

0.6 0.082 0.083 0.074 0.039

[170.4] [170.3] [171] [173.2]

0.9 0.396 0.399 0.391 0.358

[140] [139.7] [140.6] [144.9]

1 0.952 0.953 0.955 0.951

(51.3) (51.3) (51.3) (51)

[57.2] [57.1] [56.9] [57.1]

Table 2. Detecting unit roots using R̃N with ζ = 5: Empirical size respec-

tively power, CARL given a signal (in parentheses), and ARL (in brackets),

for various values of φ (AR parameter) and β (MA parameter).

References

[1] Andrews, D. W. K. (1991). Heteroscedasticity and autocorrelation consistent covariance matrix esti-

mation. Econometrica, 59, 3, 817-858.

[2] Bai, J. (1994). Weak convergence of the sequential empirical processes of residuals in ARMA models.

Annals of Statistics, 22, 2051-2061.

[3] Bai, J., Lumsdaine, R.L., and Stock, J.H. (1998). Testing for and dating common breaks in multivariate

time series, Review of Economic Studies, 65, 395-432.

[4] Bierens, H. J. (1997). Testing the unit root with drift hypothesis against nonlinear trend stationarity,

with an application to the US price level and interest rate. Journal of Econometrics, 81, 29-64.

[5] Billingsley P. (1968). Convergence of Probability Measures. Wiley, New York.

[6] Breitung, J. (2002). Nonparametric tests for unit roots and cointegration. Journal of Econometrics,

108, 343-363.
31



ϑ

0.1 0.5 0.75

h = 125 0.385 0.072 0.066

(133.2) (54.6) (41.7)

[189.7] [119.9] [60.3]

h = 50 0.293 0.051 0.055

(112.6) (39.4) (21.7)

[192] [120.2] [60.1]

h = 25 0.247 0.041 0.046

(113.5) (37.4) (15.4)

[197.4] [120.9] [60.4]

h = 10 0.208 0.031 0.037

(117.3) (40) (13.8)

[202.6] [121.9] [60.8]

Table 3. Change from I(1) to I(0): Empirical rejection rates, conditional

average delay (in parentheses), and unconditional average delay (in brackets).

[7] Brockwell, P. J. and Davies, R. A. (1991). Time Series: Theory and Methods, 2nd edition, Springer,

New York.

[8] Chan, N.H. and Wei, C.Z. (1987). Asymptotic inference for nearly nonstationary AR(1) processes.

Annals of Statistics, 15, 3, 1050 - 1063.

[9] Chan, N.H. and Wei, C.Z. (1988). Limiting distributions of least squares estimates of unstable au-

toregressive processes. Annals of Statistics, 16, 1, 367-401.

[10] Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimates for autoregressive time series

with a unit root. Journal of the American Statistical Association, 74, 427-431.

[11] Evans, G.B.A. and Savin, N.E. (1981). The calculation of the limiting distribution of the least squares

estimator of the parameter in a random walk model. Annals of Statistics, 9, 8, 1114-1118.

[12] Ferger, D. (1993). Nonparametric detection of changepoints for sequentially observed data. Stochastic

Processes and their Applications, 51, 359-372.
32



ϑ

0.1 0.5 0.75

h = 125 0.94 0.744 0.155

(123.7) (87.9) (49.7)

[129.8] [97.4] [58.5]

h = 50 0.966 0.854 0.468

(103.2) (74) (49.4)

[107.4] [80.6] [53.7]

h = 25 0.972 0.895 0.628

(94.8) (65) (44.3)

[98.5] [70.4] [48.4]

h = 10 0.974 0.913 0.702

(89.8) (58.2) (39.4)

[93.4] [63.1] [43.8]

Table 4. Change from I(0) to I(1): Empirical rejection rates, conditional

average delay (in parentheses), and unconditional average delay (in brackets).

[13] Ferger, D. (1995). Nonparametric tests for nonstandard change-point problems. Annals of Statistics,

23, 1848-1861.

[14] Gill, R.D. (1989). Non- and semi-parametric maximum likelihood estimators and the von Mises method

(Part I). Scandinavian Journal of Statistics, 16, 97-128.

[15] Giraitis, L., Kokoszka, P., Leipus, R., and Teyssiere, G. (2003). Rescaled variance and related tests

for long memory in volatility and levels. Journal of Econometrics, 112, 265-294.

[16] Hansen, H. and Johansen, S. (1999). Some tests for parameter constancy in cointegrated VAR-models.

Econometrics Journal, 2, 306-333.

[17] Herrndorf, N. (1985). A functional central limit theorem for strongly mixing sequences of random

variables. Probability Theory and Related Fields, 69, 541-550.
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