
6th St.Petersburg Workshop on Simulation (2009) 1-3

A Note on Data-Adaptive Bandwidth Selection for

Sequential Kernel Smoothers
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Abstract

Sequential kernel smoothers form a class of procedures covering various

known methods for the problem of detecting a change in the mean as special

cases. In applications, one often aims at estimation, prediction and detection

of changes. We propose to use sequential kernel smoothers and study a

sequential cross-validation algorithm to choose the bandwidth parameter

assuming that observations arrive sequentially at equidistant time instants.

An uniform weak law of large number and a consistency result for the cross-

validated bandwidth is discussed.

1 Introduction

Let us assume that observations Yn = YTn, 1 ≤ n ≤ T , T the maximum sample
size, arrive sequentially and satisfy the model equation

Yn = m(n/T ) + ǫn, n = 1, 2, . . . , T, T ≥ 1,

for some bounded and piecewise continuous function m : [0,∞) → R. The errors
{ǫn : n ∈ N} form a sequence of i.i.d. random variables such that

E(ǫn) = 0, E(ǫ41) < ∞. (1)

Consequently, m(t), t ∈ [0, 1], models the process mean during the relevant time
frame [0, T ]. In practice, an analysis has often to solve three problems. (i) Estima-
tion of the current process mean. (ii) One-step prediction of the process mean. (iii)
Signaling when there is evidence that the process mean differs from an assumed
(null) model. Usually, different statistics are used for these problems. To ease
interpretation and applicability, we will base the detector on the same statistic
used for estimation and prediction. Our reasoning is that a method which fits the
data well and has convincing prediction properties should also possess reasonable
detection properties for a large class of alternatives models.

We confine ourselves to closed end procedures where monitoring stops at a
(usually large) time horizon T . The proposed kernel smoother is controlled by
a bandwidth parameter which controls the degree of smoothing. As well known,
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its selection is crucial, particularly for estimation and prediction accuracy. We
propose to select the bandwidth sequentially by minimizing a sequential version
of the cross-validation criterion. The topic has been quite extensively studied
in the literature assuming the classic regression estimation framework where the
data gets dense as the sample size increases. A comprehensive monograph of
the general methodology is [7]. For references to the literature on estimation of
regression functions that are smooth except some discontinuity (change-) points
see the recent work of [2].

Before proceeding, let us discuss our assumptions on m. Often the information
about the problem of interest is not sufficient to setup a (semi-) parametric model
for the process mean m and the distribution of the error terms, which would allow
us to use methods based on, e.g., likelihood ratios. In this paper it is only assumed
that

m ∈ Lip, m(t) > 0, t > 0, and ‖m‖∞ < ∞ , (2)

where Lip denotes the class of Lipschitz continuous functions. Under these general
conditions, one should use detectors which avoid (semi-) parametric specifications
about the shape of m, and nonparametric smoothers m̂n which estimate some
monotone functional of the process mean and are sensitive with respect to changes
of the mean. For these reasons, we confine our study to detectors of the form

ST = inf{⌊s0T ⌋ ≤ t ≤ T : m̂t > c}.

Here c is a threshold (control limit), s0 ∈ (0, 1) determines through ⌊Ts0⌋ the
start of monitoring, ⌊x⌋ denoting the integer part of x, and {m̂n : n ∈ N} is a se-
quence of σ(Y1, . . . , Yn)-measureable statistics. Specifically, we study the following
sequential kernel smoother

m̃n = m̃n,h =
1

h

n∑

i=1

K([i − n]/h)Yi, n = 1, 2, . . .

and the associated normed version

m̂n = m̂n,h = m̃h/
1

h

n∑

j=1

K([i − n]/h),

respectively, which are related to the classic Nadaraya-Watson estimator. It is
worth noting that various classic control chart statistics are obtained as special
cases. Denoting the target value by µ0, the CUSUM chart is based on Cn =∑n

i=1[Xi − (µ0 + K)] where {Xn} denotes the observed process and K is the
reference value. This chart corresponds to the choice K(z) = 1 if Yn = Xn− (µ0 +
K) for all n. The EWMA recursion, m̂n = λYn + (1−λ)m̂n−1 with starting value
m̂0 = Y0, λ ∈ (0, 1) a smoothing parameter, corresponds to the kernel K(z) = e|z|

and the bandwidth h = 1/ log(1 − λ).
Our assumptions on the smoothing kernel are as follows.

K ∈ Lip(R; [0,∞)), ‖K‖∞ < ∞, supp(K) ⊂ [−1, 1], and K > 0 on (0, 1). (3)
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For the bandwidth h > 0 we assume that

lim
T→∞

T/h = ξ (4)

for some constant ξ ∈ (0,∞), which guarantees that in our design the number of
observations on which m̂T depends converges to ∞, as T → ∞. In practice, one
can select ξ and put h = T/ξ.

In [4, 5, 6] procedures based on the sequential smoother m̂n are studied, which
allow us to detect changes in the mean of a stationary or random walk series of
observations. The asymptotic theory was studied as well. Specifically, in [5] it is
shown that under the assumptions of the present paper the process {

√
Tm̂⌊Ts⌋,h :

s ∈ [0, 1]} satisfies a functional central limit theorem when m = 0, i.e.,

√
Tm̂⌊Ts⌋,h ⇒ M(s),

for some centered Gaussian process {M(s) : s ∈ [0, 1]} which depends on ξ.This
result can be used to construct detection procedures with pre-specified statistical
properties. E.g., when choosing the control limit such that the type I error rate
satisfies P (ST ≤ T ) = α when m = 0 for some given significance level α ∈ (0, 1),
the control limit also depends on ξ. The question arises, how one can or should
select the bandwidth h ∼ T and the parameter ξ, respectively.

In this paper we propose to select the bandwidth h > 0 such that the Yt are
well approximated by sequential predictions m̂t which are calculated from past
data Y1, . . . , Yt−1. For that purpose we propose a sequential version of the cross-
validation criterion based on sequential leave-one-out estimates.

2 Sequential Cross-Validation

The idea of cross-validation is to choose parameters such that the corresponding
estimates provide a good fit on average. To achieve this goal, one may consider the
average squared distance between observations, Yi, and predictions as an approxi-
mation of the integrated squared distance. To avoid over-fitting and interpolation,
the prediction of Yi is determined using the reduced sample where Yi is omitted.
Since, additionally, we aim at selecting the bandwidth h to obtain a good fit when
using the sequential estimate, we consider

m̂h,−i = N−1
T,−i

1

h

i−1∑

j=1

K([j − i]/h)Yj, i = 2, 3, . . .

with the constant NT,−i = h−1
∑i−1

j=1 K([j − i]/h). Notice that m̂h,−i can be
regarded as a sequential leave-one-out estimate. The corresponding sequential
leave-one-out cross-validation criterion is defined as

CVs(h) =
1

T

⌊Ts⌋∑

i=2

(Yi − m̂h,−i)
2, h > 0.
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The cross-validation bandwidth at time s is now obtained by minimizing CVs(h)
for fixed s. Notice that CVs(h) is a sequential unweighted version of the criterion
studied by [3] in the classic regression function estimation framework. We do not
consider a weighted CV sum, since we have in mind that the selected bandwidth is
used to obtain a good fit for past and current observations. However, similar results
as presented here can be obtained for the weighted criterion T−1

∑n

i=1 K([i −
n]/h)(Yi − m̂h,−i)

2 as well. Notice that due to

CVs(h) =
1

T

⌊Ts⌋∑

i=1

Y 2
i − 2

T

⌊Ts⌋∑

i=2

Yim̂h,−i +
1

T

⌊Ts⌋∑

i=2

m̂2
h,−i,

minimizing CVs(h) is equivalent to minimizing

CT,s(h) = − 2

T

⌊Ts⌋∑

i=2

Yim̂h,−i +
1

T

⌊Ts⌋∑

i=2

m̂2
h,−i.

Thus, we will study CT,s(h) in the sequel. Cross-validation is expensive in terms
of computational costs and minimizing CT,s for all s is not feasible in many case.
Therefore and to simplify exposition, let us fix a finite number of time points

0 < s1 < · · · < sN ,

N ∈ N. Later we shall relax this assumption and allow that N is an increasing
function of T . At time si the cross-validation criterion is minimized to select the
bandwidth, h∗

i = h∗
i (Y1, . . . , Ysi

), and that bandwidth is used during the time
interval [si, si+1), i = 1, . . . , N .

3 Asymptotic Results

The question arises which function is estimated by CT,s(h). Our first result iden-
tifies the limit and shows convergence in mean.

Theorem 1. We have

E(CT,s(h)) → Cξ(s) = −2

∫ s

0

∫ r

0 ξK(ξ(u − r))m(ξu) dudr∫ s

0
ξK(ξ(r − s)) dr

(5)

+

∫ s

0
ξ2

∫ r

0

∫ r

0
K(ξ(u − r))K(ξ(v − r))m(u)m(v) du dv dr∫ s

0
ξK(ξ(r − s)) dr

,

as T → ∞, uniformly in s ∈ [s0, 1].

Before proceeding, let us consider an example where the function Cξ(s) pos-
sesses a well-separated minimum.

Example 1. Suppose K is given by K(z) = (1 − |z|)1[0,1](z) for z ∈ R. Further,
let us consider the nonlinear function m(t) = x(x − 0.2)(x − 0.4). Clearly, Cξ(s)
is a polynomial of order 4 with coefficients which depend on s. Figure 1 depicts
Cξ(s) for some values of ξ. The locations of the (real) roots of ∂

∂ξ
Cξ(s) depend on

s ∈ [0, 1] and are shown in Figure 1 as well.
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Figure 1: Left panel: The function Cs(ξ), ξ ∈ (0, 20], for s ∈ {0.1, 0.2, 0.3, 0.4}.
Right panel: The optimal values for ξ as a function of s ∈ (0, 1].

We will now study the uniform mean squared convergence of the random func-
tion CT,s(h). Define SN = {si : 1 ≤ i ≤ N}.

Theorem 2. We have

E sup
s∈SN

|CT,s(h) − E(CT,s(h))|2 = O(T−1),

as T → ∞.

Current research focuses on the following generalization which allows that the
number of time points where cross validation is conducted is a function of the
maximum sample size T .

Conjecture 3. Assume N = NT and

0 < s0 < sN1 < · · · < sNN ≤ 1, N ≥ 1, (6)

and put SN = {sNi : 1 ≤ i ≤ N}. Given the assumptions of Theorem 2 there
exists some γ > 0 with NT

T γ = o(1), such that

E sup
s∈SN

|CT,s(h) − E(CT,s(h))|2 = o(1)

Combining the above statements, we obtain

Theorem 4. Suppose that (1) and (6)

E sup
s∈SN

|CT,s(h) − Cs(ξ))|2 → 0,

as T → ∞.

We shall now extend the above results to study weak consistency of the cross-
validation bandwidth under fairly general and weak assumptions. Having in mind
the fact that h ∼ T , let us simplify the setting by assuming that

h = h(ξ) = T/ξ, ξ ∈ [1, Ξ],
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for some fixed Ξ ∈ (1,∞). This means, h and ξ are now equivalent parameters
for each T . We also restrict the optimization to a compact interval, which is not
restrictive for applications. Now m̂h,−i can be written as

m̂h,−i =
1

(i − 1)h

i−1∑

j=1

K(ξ(j − i)/T )Yj.

With some abuse of notation, let us also write

CT,s(ξ) = CT,s(T/ξ).

Theorem 5. For any s ∈ [s0, 1]

sup
ξ∈[1,Ξ]

|CT,s(ξ) − ECT,s(ξ)| = oP (1), (7)

and
sup

ξ∈[1,Ξ]

|CT,s(ξ) − Cξ(s)| = oP (1), (8)

as T → ∞.

We are now in a position to formulate the following conjecture on the asymp-
totic behavior of the the cross-validated sequential bandwidth selector.

Conjecture 6. Suppose Cξ(s) possesses a well-separated minimum ξ∗ ∈ [1, Ξ],
i.e.,

sup
ξ∈[1,Ξ]:|ξ−ξ∗|≥ε

Cξ(s) > Cξ∗(s).

for every ε > 0. Then

argminξ∈[1,Ξ] CT,s(ξ)
P→ ξ∗.
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[2] Härdle W., Marron J.S. (1985) Optimal bandwidth selection in nonparametric
regression function estimation. Ann. Statist., 13, 1465-1481.

[3] Schmid W., Steland A. (2000) Sequential control of non-stationary processes
by nonparametric kernel control charts. AStA Adv. Stat. Anal., 84, 315-336.

[4] Steland A. (2004) Sequential control of time series by functionals of kernel-
weighted empirical processes under local alternatives. Metrika, 60, 229-249.

[5] Steland A. (2005) Random walks with drift - A sequential approach. J. Time
Ser. Anal., 26 (6), 917-942.

[6] Wand M.P., Jones M.C. (1995) Kernel Smoothing. Chapman & Hall, Boca
Raton.

6


